Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 280
Filtrar
1.
bioRxiv ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38645121

RESUMO

Purpose: To investigate follicular fluid (FF) phthalate levels in adolescents undergoing fertility preservation compared to oocyte donors and explore its association with ovarian reserve and cumulus cell gene expression. Methods: 20 Adolescents (16.7 ± 0.6 years old) and 24 oocyte donors (26.2 ± 0.4 years old) undergoing fertility preservation were included in the study. Patient demographics, ovarian stimulation and oocyte retrieval outcomes were analyzed for each group. FF levels of 9 phthalate metabolites were assessed individually and as molar sums representative of common compounds (all phthalates: Æ©Phthalates; DEHP: Æ©DEHP), exposure sources (plastics: Æ©Plastic; personal care products: Æ©PCP), and modes of action (anti-androgenic: Æ©AA) and compared between the two groups. Results: Follicular fluid Æ©Plastic and Æ©PCP levels were significantly higher in adolescents compared to oocyte donors (p<0.05). Follicular fluid Æ©DEHP, Æ©Plastic, Æ©PCP, Æ©AA, and Æ©Phthalates levels were positively associated with antral follicle count (AFC) (p<0.05) in oocyte donors when adjusted for age, BMI, and race/ethnicity. RNA-seq analysis revealed 248 differentially expressed genes (DEGs) in cumulus cells of adolescents within the top quartile (n=4) of FF Æ©Phthalates levels compared to the adolescents within the bottom half (n=9). Genes enriched in pathways involved in cell motility and development were significantly downregulated. Conclusion: Adolescents undergoing fertility preservation cycles demonstrate higher levels of phthalate metabolites in their follicular fluid compared to oocyte donors. Phthalate metabolite levels in FF are associated with higher AFC levels in oocyte donors. Higher phthalate levels in FF are associated with alterations in the cumulus cells transcriptome in adolescents. Capsule Summary: Phthalates are detected in the follicular fluid of adolescents and oocytes donors, and the levels are increased in the follicular fluid of adolescents. Higher total phthalate levels in follicular fluid are associated with altered cumulus cells transcriptome in adolescents.

2.
Environ Health Perspect ; 132(4): 45001, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38592230

RESUMO

BACKGROUND: The European Food Safety Authority (EFSA) recommended lowering their estimated tolerable daily intake (TDI) for bisphenol A (BPA) 20,000-fold to 0.2 ng/kg body weight (BW)/day. BPA is an extensively studied high production volume endocrine disrupting chemical (EDC) associated with a vast array of diseases. Prior risk assessments of BPA by EFSA as well as the US Food and Drug Administration (FDA) have relied on industry-funded studies conducted under good laboratory practice protocols (GLP) requiring guideline end points and detailed record keeping, while also claiming to examine (but rejecting) thousands of published findings by academic scientists. Guideline protocols initially formalized in the mid-twentieth century are still used by many regulatory agencies. EFSA used a 21st century approach in its reassessment of BPA and conducted a transparent, but time-limited, systematic review that included both guideline and academic research. The German Federal Institute for Risk Assessment (BfR) opposed EFSA's revision of the TDI for BPA. OBJECTIVES: We identify the flaws in the assumptions that the German BfR, as well as the FDA, have used to justify maintaining the TDI for BPA at levels above what a vast amount of academic research shows to cause harm. We argue that regulatory agencies need to incorporate 21st century science into chemical hazard identifications using the CLARITY-BPA (Consortium Linking Academic and Regulatory Insights on BPA Toxicity) nonguideline academic studies in a collaborative government-academic program model. DISCUSSION: We strongly endorse EFSA's revised TDI for BPA and support the European Commission's (EC) apparent acceptance of this updated BPA risk assessment. We discuss challenges to current chemical risk assessment assumptions about EDCs that need to be addressed by regulatory agencies to, in our opinion, become truly protective of public health. Addressing these challenges will hopefully result in BPA, and eventually other structurally similar bisphenols (called regrettable substitutions) for which there are known adverse effects, being eliminated from all food-related and many other uses in the EU and elsewhere. https://doi.org/10.1289/EHP13812.


Assuntos
Compostos Benzidrílicos , Fenóis , Humanos , Inocuidade dos Alimentos , Nível de Efeito Adverso não Observado , Revisões Sistemáticas como Assunto
4.
Biol Reprod ; 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38381622

RESUMO

Prenatal exposure to Di(2-ethylhexyl) phthalate (DEHP) impairs the reproductive system and causes fertility defects in male offspring. Additionally, high-fat diet (HF) is a risk factor for reproductive disorders in males. In this study, we tested the hypothesis that prenatal exposure to a physiologically relevant dose of DEHP in conjunction with HF diet synergistically impacts reproductive function and fertility in male offspring. Female mice were fed a control or HF diet 7 days prior to mating and until their litters were weaned on postnatal day 21. Pregnant dams were exposed to DEHP (20 µg/kg/day) or vehicle from gestational day 10.5 until birth. The male offspring's gross phenotype, sperm quality, serum hormonal levels, testicular histopathology, and testicular gene expression pattern were analyzed. Male mice born to dams exposed to DEHP + HF had smaller testes, epididymides, and shorter anogenital distance compared to those exposed to HF or DEHP alone. Sperm analysis revealed that DEHP+HF mice had lower sperm concentration and motility compared to DEHP mice. Moreover, DEHP+HF mice had more apoptotic germ cells, fewer Leydig cells, and lower serum testosterone levels than DEHP mice. Further, testicular mRNA expression of Dnmt1 and Dnmt3a was two to eight-fold higher than in DEHP mice by qPCR, suggesting that maternal HF diet and prenatal DEHP exposure additively impact gonadal function by altering the degree of DNA methylation in the testis. These results suggest that the combined exposure to DEHP and HF synergistically impairs reproductive function in male offspring, greater than exposure to DEHP or HF diet alone.

6.
Biol Reprod ; 110(1): 198-210, 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-37812459

RESUMO

Di(2-ethylhexyl) phthalate and diisononyl phthalate are widely used as plasticizers in polyvinyl chloride products. Short-term exposures to phthalates affect hormone levels, ovarian follicle populations, and ovarian gene expression. However, limited data exist regarding the effects of long-term exposure to phthalates on reproductive functions. Thus, this study tested the hypothesis that short-term and long-term exposure to di(2-ethylhexyl) phthalate or diisononyl phthalate disrupts follicle dynamics, ovarian and pituitary gene expression, and hormone levels in female mice. Adult CD-1 female mice were exposed to vehicle, di(2-ethylhexyl) phthalate, or diisononyl phthalate (0.15 ppm, 1.5 ppm, or 1500 ppm) via the chow for 1 or 6 months. Short-term exposure to di(2-ethylhexyl) phthalate (0.15 ppm) and diisononyl phthalate (1.5 ppm) decreased serum follicle-stimulating hormone levels compared to control. Long-term exposure to di(2-ethylhexyl) phthalate and diisononyl phthalate (1500 ppm) increased the percentage of primordial follicles and decreased the percentages of preantral and antral follicles compared to control. Both phthalates increased follicle-stimulating hormone levels (di(2-ethylhexyl) phthalate at 1500 ppm; diisononyl phthalate at 1.5 ppm) and decreased luteinizing hormone levels (di(2-ethylhexyl) phthalate at 0.15 and 1.5 ppm; diisononyl phthalate at 1.5 ppm and 1500 ppm) compared to control. Furthermore, both phthalates altered the expression of pituitary gonadotropin subunit genes (Cga, Fshb, and Lhb) and a transcription factor (Nr5a1) that regulates gonadotropin synthesis. These data indicate that long-term exposure to di(2-ethylhexyl) phthalate and diisononyl phthalate alters follicle growth dynamics in the ovary and the expression of gonadotropin subunit genes in the pituitary and consequently luteinizing hormone and follicle-stimulating hormone synthesis.


Assuntos
Dietilexilftalato , Ácidos Ftálicos , Camundongos , Animais , Feminino , Ácidos Ftálicos/toxicidade , Dietilexilftalato/toxicidade , Folículo Ovariano/metabolismo , Hormônio Foliculoestimulante/farmacologia , Hormônio Luteinizante/metabolismo
7.
Biol Reprod ; 110(3): 632-641, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38134965

RESUMO

Di(2-ethylhexyl) phthalate (DEHP) is a pervasive environmental toxicant used in the manufacturing of numerous consumer products, medical supplies, and building materials. DEHP is metabolized to mono(2-ethylhexyl) phthalate (MEHP). MEHP is an endocrine disruptor that adversely affects folliculogenesis and steroidogenesis in the ovary, but its mechanism of action is not fully understood. Thus, we tested the hypothesis that the aryl hydrocarbon receptor (AHR) plays a functional role in MEHP-mediated disruption of folliculogenesis and steroidogenesis. CD-1 mouse antral follicles were isolated and cultured with MEHP (0-400 µM) in the presence or absence of the AHR antagonist CH223191 (1 µM). MEHP treatment reduced follicle growth over a 96-h period, and this effect was partially rescued by co-culture with CH223191. MEHP exposure alone increased expression of known AHR targets, cytochrome P450 (CYP) enzymes Cyp1a1 and Cyp1b1, and this induction was blocked by CH223191. MEHP reduced media concentrations of estrone and estradiol compared to control. This effect was mitigated by co-culture with CH223191. Moreover, MEHP reduced the expression of the estrogen-sensitive genes progesterone receptor (Pgr) and luteinizing hormone/choriogonadotropin receptor (Lhcgr) and co-treatment with CH223191 blocked this effect. Collectively, these data indicate that MEHP activates the AHR to impair follicle growth and reduce estrogen production and signaling in ovarian antral follicles.


Assuntos
Compostos Azo , Dietilexilftalato , Dietilexilftalato/análogos & derivados , Ácidos Ftálicos , Pirazóis , Camundongos , Animais , Feminino , Dietilexilftalato/toxicidade , Receptores de Hidrocarboneto Arílico/metabolismo , Estrogênios
8.
Artigo em Inglês | MEDLINE | ID: mdl-38049486

RESUMO

BACKGROUND: Humans are widely exposed to phthalates, which are metabolized in the body and excreted in urine. Phthalate metabolites are excreted within hours of exposure, making urinary phthalate biomarker concentrations highly variable. OBJECTIVE: The goal of this study was to characterize the long-term variability in phthalate biomarker concentrations in women across the midlife transition and to identify factors that may be associated with increased variability in those phthalate biomarker concentrations by analyzing longitudinal urinary phthalate metabolite data from the Midlife Women's Health Study (2006-2015). METHODS: A total of 741 women were enrolled in the study for a period of up to 4 years, during which they each provided 2-4 urine samples per year over 4 consecutive weeks that were pooled for analysis (1876 total pools). Nine phthalate metabolites were assessed individually and as molar sums representative of common compounds (all phthalates: Æ©Phthalates; DEHP: Æ©DEHP), exposure sources (plastics: Æ©Plastic; personal care products: Æ©PCP), and modes of action (anti-androgenic: Æ©AA). Phthalate metabolites were analyzed by quartile using generalized linear models. In addition, the impact of explanatory variables (race, annual family income, and type of work) on phthalate quartile was examined using ordinal logistic regression models. IMPACT STATEMENT: Phthalate biomarker concentrations are highly variable among midlife women over time, and annual sampling may not be sufficient to fully characterize long-term exposure.

9.
Reprod Toxicol ; 122: 108491, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37863342

RESUMO

Phthalates are synthetic chemicals widely used as plasticizers and stabilizers in various consumer products. Because of the extensive production and use of phthalates, humans are exposed to these chemicals daily. While most studies focus on a single phthalate, humans are exposed to a mixture of phthalates on a regular basis. The impact of continuous exposure to phthalate mixture on uterus is largely unknown. Thus, we conducted studies in which adult female mice were exposed for 6 months to 0.15 ppm and 1.5 ppm of a mixture of phthalates via chow ad libitum. Our studies revealed that consumption of phthalate mixture at 0.15 ppm and 1.5 ppm for 6 months led to a significant increase in the thickness of the myometrial layer compared to control. Further investigation employing RNA-sequencing revealed an elevated transforming growth factor beta (TGF-ß) signaling in the uteri of mice fed with phthalate mixture. TGF-ß signaling is associated with the development of fibrosis, a consequence of excessive accumulation of extracellular matrix components, such as collagen fibers in a tissue. Consistent with this observation, we found a higher incidence of collagen deposition in uteri of mice exposed to phthalate mixture compared to unexposed controls. Second Harmonic Generation (SHG) imaging showed disorganized collagen fibers and nanoindentation indicated a local increase in uterine stiffness upon exposure to phthalate mixture. Collectively, our results demonstrate that chronic exposure to phthalate mixture can have adverse effects on uterine homeostasis.


Assuntos
Poluentes Ambientais , Leiomioma , Ácidos Ftálicos , Fator de Crescimento Transformador beta , Animais , Feminino , Camundongos , Colágeno , Exposição Ambiental/efeitos adversos , Poluentes Ambientais/toxicidade , Ácidos Ftálicos/toxicidade , Plastificantes/toxicidade , Fator de Crescimento Transformador beta/genética , Leiomioma/induzido quimicamente
10.
Reprod Toxicol ; 122: 108489, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37839492

RESUMO

Phthalates are chemicals ubiquitously used in industry. Individual phthalates have been found to adversely affect female reproduction; however, humans are exposed to a mixture of phthalates daily, primarily through ingestion. Previous studies show that exposure to an environmentally relevant mixture of phthalates (Mix) can affect female reproduction. Little research, however, has been conducted on the effects of short-term (1 month) and long-term (6 months) exposure to Mix on ovarian functions. Thus, this study tested the hypothesis that short-term and long-term exposure to Mix alters ovarian folliculogenesis, serum hormone concentrations, pituitary gene expression, and ovarian expression of genes involved in steroidogenesis, apoptosis, cell cycle regulation, and oxidative stress. Adult CD-1 female mice were exposed to vehicle control (corn oil) or Mix (0.15-1500 ppm) in the chow for 1 or 6 months. Exposure to Mix for 1 month increased the number of atretic follicles (0.15 ppm), altered ovarian gene expression (0.15 ppm, 1500 ppm), and decreased serum testosterone (1.5 ppm) compared to control. Exposure to Mix for 6 months increased serum follicle-stimulating hormone (FSH) (0.15 ppm), decreased serum luteinizing hormone (LH) (0.15 ppm, 1.5 ppm, and 1500 ppm), decreased serum estradiol (1500 ppm), altered pituitary gene expression (1500 ppm), increased the number (1500 ppm) and percentage (1.5 ppm and 1500 ppm) of primordial follicles, and decreased the percentage of preantral (1500 ppm) and antral (1.5 ppm and 1500 ppm) follicles compared to control. These data indicate that exposure to Mix can alter folliculogenesis, steroidogenesis, and gene expression in female mice.


Assuntos
Exposição Dietética , Folículo Ovariano , Adulto , Humanos , Camundongos , Feminino , Animais , Hormônio Luteinizante , Hormônio Foliculoestimulante , Expressão Gênica , Estradiol
11.
Toxicol Sci ; 196(2): 229-237, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37632782

RESUMO

Neonicotinoid insecticides are synthetic nicotine derivatives that have high affinity for invertebrate nicotine receptors and low affinity for mammalian nicotine receptors. However, imidacloprid (IMI), the most commonly used neonicotinoid, can be bioactivated by the liver in mammals to desnitro-imidacloprid, an intermediate metabolite that effectively binds and activates mammalian receptors. However, it is not known if other tissues such as the ovaries can metabolize IMI. Thus, the present study tested the hypothesis that ovarian antral follicles metabolize and bioactivate IMI. Antral follicles were dissected from the ovaries of CD-1 mice and cultured in media containing dimethyl sulfoxide or IMI (0.2-200 µg/ml) for 48 and 96 h. Media were subjected to liquid chromatography-mass spectrometry for detection of phase I IMI metabolites. Follicles from the cultures were used for gene expression analysis of metabolic enzymes associated with IMI metabolism. All IMI metabolites were detected at 48 and 96 h. Oxidized IMI intermediates were detected in media from cultured follicles, but not environmental controls. Reduced IMI intermediates were detected in media from cultured follicles and the environmental controls. At 48 h, IMI did not affect expression of any metabolic enzymes compared with control. At 96 h, IMI induced Cyp2e1 and Cyp4f18 compared with control. These data indicate that mouse ovarian follicles metabolize IMI and that IMI induces ovarian Cyp expression over time.


Assuntos
Inseticidas , Nicotina , Feminino , Camundongos , Animais , Nicotina/farmacologia , Neonicotinoides/toxicidade , Inseticidas/toxicidade , Inseticidas/metabolismo , Nitrocompostos/toxicidade , Folículo Ovariano , Mamíferos/metabolismo
12.
Reprod Toxicol ; 120: 108427, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37400041

RESUMO

Polychlorinated biphenyls (PCBs) were used in industrial applications until they were banned in the 1970s, but they still persist in the environment. Little is known about the long-term effects of exposure to PCB mixtures on the rat ovary during critical developmental periods. Thus, this study tested whether prenatal and postnatal exposures to PCBs affect follicle numbers and gene expression in the ovaries of F1 offspring. Sprague-Dawley rats were treated with vehicle or Aroclor 1221 (A1221) at 1 mg/kg/day during embryonic days 8-18 and/or postnatal days (PND) 1-21. Ovaries from F1 rats were collected for assessment of follicle numbers and differential expression of estrogen receptor 1 (Esr1), estrogen receptor 2 (Esr2), androgen receptor (Ar), progesterone receptor (Pgr), and Ki-67 (Ki67) at PNDs 8, 32, and 60. Sera were collected for measurement of estradiol concentrations. Prenatal exposure to A1221 significantly decreased the number of primordial follicles and the total number of follicles at PND 32 compared to control. Postnatal PCB exposure borderline increased Ki67 gene expression and significantly increased Ki67 protein levels (PND 60) compared to control. Combined prenatal and postnatal PCB exposure borderline decreased Ar expression (PND 8) compared to control. However, PCB exposure did not significantly affect the expression of Pgr, Esr1, and Esr2 or serum estradiol concentrations compared to control at any time point. In conclusion, these data suggest that PCB exposure affects follicle numbers and levels of the proliferation marker Ki67, but it does not affect expression of some sex steroid hormone receptors in the rat ovary.


Assuntos
Bifenilos Policlorados , Efeitos Tardios da Exposição Pré-Natal , Gravidez , Feminino , Ratos , Animais , Humanos , Bifenilos Policlorados/toxicidade , Ratos Sprague-Dawley , Ovário , Antígeno Ki-67 , Estradiol , Proliferação de Células , Expressão Gênica
13.
Toxics ; 11(7)2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37505567

RESUMO

The use of zinc oxide nanoparticles (ZnO NP) in consumer products is increasing, raising concern about their potential toxicity to human health. Nanoparticles have endocrine disrupting effects and can induce oxidative stress, leading to biomolecule oxidation and cell dysfunction. The ovary is one of the most important endocrine organs in female reproduction. Nanoparticles accumulate in the ovary, but it is unknown whether and how exposure to these materials disrupts antral follicle functions. Thus, this study tested the hypothesis that the in vitro exposure to ZnO NPs affects the steroidogenic pathway and induces oxidative stress in ovarian antral follicles. Antral follicles from CD-1 mice were cultured with ZnO NPs (5, 10, and 15 µg/mL) for 96 h. ZnO NP exposure did not affect apoptosis and cell cycle regulators at any of the tested concentrations. ZnO NP exposure at low levels (5 µg/mL) increased aromatase levels, leading to increased estradiol levels and decreased estrogen receptor alpha (Esr1) expression. ZnO NP exposure at 15 µg/mL induced an antioxidant response in the antral follicles as evidenced by changes in expression of antioxidant molecules (Nrf2, Cat, Sod1, Gsr, Gpx) and decreased levels of reactive oxygen species. Interestingly, ZnO NPs dissolve up to 50% in media and are internalized in cells as soon as 1 h after culture. In conclusion, ZnO NPs are internalized in antral follicles, leading to increased estrogen production and an antioxidant response.

14.
Reprod Toxicol ; 120: 108446, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37482143

RESUMO

Di-isononyl phthalate (DiNP), an endocrine-disrupting chemical, is found in numerous consumer products and human exposure to this phthalate is becoming inevitable. The impact of DiNP exposure on the establishment and maintenance of pregnancy remains largely unknown. Thus, we conducted studies in which pregnant mice were exposed to an environmentally relevant dose (20 µg/kg BW/day) of DiNP on days 1-7 of gestation, then analyzed the effects of this exposure on pregnancy outcome. Our studies revealed that exposure to DiNP during this window led to fetal loss towards the end of gestation. Further studies showed that, although embryos were able to attach to the uterus, implantation sites in DiNP-exposed uteri exhibited impaired differentiation of stromal cells to decidual cells and an underdeveloped angiogenic network in the decidual bed. We also found that exposure to this phthalate has a significant effect on trophoblast differentiation and causes disorganization of the placental layers. The labyrinth was significantly reduced, resulting in compromised expression of nutrient transporters in the placentas of mice exposed to DiNP. These placental defects in DiNP-exposed females were the cause of fetal loss during the later stages of gestation.


Assuntos
Dietilexilftalato , Ácidos Ftálicos , Humanos , Camundongos , Gravidez , Feminino , Animais , Placentação , Placenta , Ácidos Ftálicos/toxicidade
15.
Reprod Toxicol ; 119: 108393, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37160244

RESUMO

Chemical health risk assessment is based on single chemicals, but humans and wildlife are exposed to extensive mixtures of industrial substances and pharmaceuticals. Such exposures are life-long and correlate with multiple morbidities, including infertility. How combinatorial effects of chemicals should be handled in hazard characterization and risk assessment are open questions. Further, test systems are missing for several relevant health outcomes including reproductive health and fertility in women. Here, our aim was to screen multiple ovarian cell models for phthalate induced effects to identify biomarkers of exposure. We used an epidemiological cohort study to define different phthalate mixtures for in vitro testing. The mixtures were then tested in five cell models representing ovarian granulosa or stromal cells, namely COV434, KGN, primary human granulosa cells, primary mouse granulosa cells, and primary human ovarian stromal cells. Exposures at epidemiologically relevant levels did not markedly elicit cytotoxicity or affect steroidogenesis in short 24-hour exposure. However, significant effects on gene expression were identified by RNA-sequencing. Altogether, the exposures changed the expression of 124 genes on the average (9-479 genes per exposure) in human cell models, without obvious concentration or mixture-dependent effects on gene numbers. The mixtures stimulated distinct changes in different cell models. Despite differences, our analyses suggest commonalities in responses towards phthalates, which forms a starting point for follow-up studies on identification and validation of candidate biomarkers that could be developed to novel assays for regulatory testing or even into clinical tests.


Assuntos
Disruptores Endócrinos , Ácidos Ftálicos , Animais , Camundongos , Humanos , Feminino , Ovário , Estudos de Coortes , Ácidos Ftálicos/toxicidade , Fertilidade , Disruptores Endócrinos/toxicidade
16.
Reprod Toxicol ; 118: 108388, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37127253

RESUMO

Polychlorinated-biphenyls (PCBs) are industrial compounds, which were widely used in manufacturing of electrical parts and transformers. Despite being banned in 1979 due to human health concerns, they persist in the environment. In humans and experimental model systems, PCBs elicit toxicity in part by acting as endocrine-disrupting chemicals (EDCs). Aroclor 1221 (A1221) is a weakly estrogenic PCB mixture known to alter reproductive function in rodents. EDCs can impact hormone signaling at any level of the hypothalamic-pituitary-gonadal (HPG) axis, and we investigated the effects of A1221 exposure during the prenatal and postnatal developmental periods on pituitary hormone and steroid receptor expression in female rats. Examining offspring at 3 ages, postnatal day 8 (P8), P32 and P60, we found that prenatal exposure to A1221 increased P8 neonate pituitary luteinizing hormone beta (Lhb) mRNA and LHß gonadotrope cell number while decreasing LH serum hormone concentration. No changes in pituitary hormone or hormone receptor gene expression were observed peri-puberty at P32. In reproductively mature rats at P60, we found pituitary follicle stimulating hormone beta (Fshb) mRNA levels increased by prenatal A1221 exposure with no corresponding alterations in FSH hormone or FSHß expressing cell number. Estrogen receptor alpha (ERα) mRNA and protein levels were also increased at P60, but only following postnatal A1221 dosing. Together, these data illustrate that exposure to the PCB A1221, during critical developmental windows, alters pituitary gonadotropin hormone subunits and ERα levels in offspring at different phases of maturation, potentially impacting reproductive function in concert with other components of the HPG axis.


Assuntos
Bifenilos Policlorados , Gravidez , Humanos , Ratos , Feminino , Animais , Bifenilos Policlorados/toxicidade , Receptor alfa de Estrogênio/genética , Maturidade Sexual , Gonadotropinas Hipofisárias/farmacologia , Hormônio Luteinizante Subunidade beta , RNA Mensageiro , Hormônio Foliculoestimulante
17.
Toxicol Sci ; 193(2): 204-218, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37021957

RESUMO

Phthalates are endocrine-disrupting chemicals used in consumer products. Although phthalates are obesogens and affect metabolic function, it is unknown if chronic exposure for 6 months to a phthalate mixture alters adipose tissue phenotype in female mice. After vehicle or mixture exposure, white adipose tissue and brown adipose tissue (WAT and BAT) were analyzed for expression of adipogenesis, proliferation, angiogenesis, apoptosis, oxidative stress, inflammation, and collagen deposition markers. The mixture altered WAT morphology, leading to an increase in hyperplasia, blood vessel number, and expression of BAT markers (Adipoq and Fgf2) in WAT. The mixture increased the expression of the inflammatory markers, Il1ß, Ccl2, and Ccl5, in WAT. The mixture also increased expression of the proapoptotic (Bax and Bcl2) and antiapoptotic (Bcl2l10) factors in WAT. The mixture increased expression of the antioxidant Gpx1 in WAT. The mixture changed BAT morphology by increasing adipocyte diameter, whitening area, and blood vessel number and decreased expression of the thermogenic markers Ucp1, Pgargc1a, and Adrb3. Furthermore, the mixture increased the expression of adipogenic markers Plin1 and Cebpa, increased mast cell number, and increased Il1ß expression in BAT. The mixture also increased expression of the antioxidant markers Gpx and Nrf2 and the apoptotic marker Casp2 in BAT. Collectively, these data indicate that chronic exposure to a phthalate mixture alters WAT and BAT lipid metabolism phenotypes in female mice, leading to an apparent shift in their normal morphology. Following long-term exposure to a phthalate mixture, WAT presented BAT-like features and BAT presented WAT-like features.


Assuntos
Tecido Adiposo Marrom , Antioxidantes , Animais , Camundongos , Feminino , Tecido Adiposo Marrom/metabolismo , Antioxidantes/metabolismo , Tecido Adiposo , Tecido Adiposo Branco , Fenótipo , Camundongos Endogâmicos C57BL , Caspase 2/metabolismo
18.
Inhal Toxicol ; : 1-18, 2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37075037

RESUMO

Important differences in health that are closely linked with social disadvantage exist within and between countries. According to the World Health Organization, life expectancy and good health continue to increase in many parts of the world, but fail to improve in other parts of the world, indicating that differences in life expectancy and health arise due to the circumstances in which people grow, live, work, and age, and the systems put in place to deal with illness. Marginalized communities experience higher rates of certain diseases and more deaths compared to the general population, indicating a profound disparity in health status. Although several factors place marginalized communities at high risk for poor health outcomes, one important factor is exposure to air pollutants. Marginalized communities and minorities are exposed to higher levels of air pollutants than the majority population. Interestingly, a link exists between air pollutant exposure and adverse reproductive outcomes, suggesting that marginalized communities may have increased reproductive disorders due to increased exposure to air pollutants compared to the general population. This review summarizes different studies showing that marginalized communities have higher exposure to air pollutants, the types of air pollutants present in our environment, and the associations between air pollution and adverse reproductive outcomes, focusing on marginalized communities.

20.
Toxics ; 11(4)2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37112576

RESUMO

Imidacloprid is a neonicotinoid pesticide used in large-scale agricultural systems, home gardens, and veterinary pharmaceuticals. Imidacloprid is a small molecule that is more water-soluble than other insecticides, increasing the likelihood of large-scale environmental accumulation and chronic exposure of non-targeted species. Imidacloprid can be converted to the bioactive metabolite desnitro-imidacloprid in the environment and body. Little is known about the mechanisms by which imidacloprid and desnitro-imidacloprid induce ovarian toxicity. Thus, we tested the hypothesis that imidacloprid and desnitro-imidacloprid differentially affect antral follicle growth and steroidogenesis in vitro. Antral follicles were dissected from the ovaries of CD-1 mice and cultured in media containing vehicle control or 0.2 µg/mL-200 µg/mL of imidacloprid or desnitro-imidacloprid for 96 h. Follicle morphology was monitored, and follicle size was measured every 24 h. At the end of the culture periods, media were used to quantify follicular hormone levels, and follicles were used for gene expression analysis of steroidogenic regulators, hormone receptors, and apoptotic factors. Imidacloprid did not affect follicle growth or morphology compared to the control. Desnitro-imidacloprid inhibited follicle growth and caused follicles to rupture in culture compared to the control. Imidacloprid increased progesterone, whereas desnitro-imidacloprid decreased testosterone and progesterone compared to the control. Desnitro-imidacloprid also changed estradiol compared to the control. At 48 h, IMI decreased the expression of Star, Cyp17a1, Hsd17b1, Cyp19a1, and Esr2 and increased the expression of Cyp11a1, Cyp19a1, Bax, and Bcl2 compared to the control. IMI also changed the expression of Esr1 compared to the control. At 48 h, DNI decreased the expression of Cyp11a1, Cyp17a1, Hsd3b1, Cyp19a1, and Esr1 and increased the expression of Cyp11a1, Hsd3b1, and Bax compared to the control. At 72 h of culture, IMI significantly decreased the expression of Cyp19a1 and increased the expression of Star and Hsd17b1 compared to the control. At 72 h, DNI significantly decreased the expression of Cyp11a1, Cyp17a1, Hsd3b1, and Bax and increased the expression of Esr1 and Esr2. At 96 h, IMI decreased the expression of Hsd3b1, Cyp19a1, Esr1, Bax, and Bcl2 compared to the control. At 96 h, DNI decreased the expression of Cyp17a1, Bax, and Bcl2 and increased the expression of Cyp11a1, Hsd3b1, and Bax compared to the control. Together, these data suggest mouse antral follicles are targets of neonicotinoid toxicity, and the mechanisms of toxicity differ between parent compounds and metabolites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...